¹³C AND ¹⁵N NMR SPECTRA OF 3-METHYL-1-PHENYLPYRAZOLE--4,5-DIONE 4-(4'-SUBSTITUTED PHENYL)HYDRAZONES

Antonín Lyčka", Tibor LIPTAJ^b and Josef JIRMAN^a

^a Research Institute of Organic Syntheses, 532 18 Pardubice-Rybitví and

^b Department of Physical Chemistry, Slovak Institute of Technology, 812 37 Bratislava

Received April 28th, 1986

¹³C and ¹⁵N NMR spectra have been measured of eleven 3-methyl-1-phenylpyrazole-4,5-dione 4-(4'-substituted phenyl)hydrazones (I). The ¹³C chemical shifts of the non-substituted compound I have been assigned with the use of the ¹J(¹³C, ¹³C) coupling constants obtained from the 1D--INADEQUATE spectrum. The greatest changes in chemical shifts of the compounds I connected with the substituent at 4'-position have been observed for the nitrogen atoms N_{\alpha}, N_{\beta}, N_{\beta}, N_{\beta}, N_{\beta}, N_{\beta}, N_{\beta}, N_{\beta}, N_{\beta}, The best correlated with the substituent constants by means of the equations SCS = $\rho_I \sigma_I + \rho_R \overline{\sigma}_R + \text{const.}$, where $\overline{\sigma}_R$ means one of the values σ_R^0 , σ_R^{BA} , σ_R^- , or σ_R^+ . The best correlations have been obtained for the combinations N_{\alpha} - σ_R^{BA} , N_{\beta} - σ_R^0 , and C(4) - σ_R^0 . The ¹⁵N substituent chemical shifts of the nitrogen atoms N_{\alpha} and N_{\beta} of compounds I have been compared with the analogous values of 4-substituted *trans*-azobenzenes.

The azo coupling products of benzenediazonium salts with 3-methyl-1-phenylpyrazole--5-one represent a significant group of pyrazolone dyestuffs¹. These compounds can be very well characterized by their ${}^{13}C$ and ${}^{15}N$ chemical shifts ${}^{2-5}$. The assignment

of ¹³C chemical shifts in the non-substituted compound *Id* agrees with refs^{2,4,5} except for the assignment of C₃ and C₄ carbon atoms. The measurements of ¹³C chemical shifts in 3-tert-butyl-1-phenylpyrazole-5-one and 3-tert-butyl-1-phenylpyrazole-4,5-dione 4-phenylhydrazone⁶ support the assignment given in refs^{4,5}. The 3-methyl-1-phenylpyrazole-4,5-dione 4-(4'-substituted phenyl)hydrazones *I* exist completely in their hydrazone form with intramolecular hydrogen bridge²⁻⁵ and represent a suitable model for a study of substituent effects on the N_a and N_b nitrogen atoms in the 4-X—C₆H₄—N_aH—N_b= grouping and make it possible to compare these effects with the ¹⁵N substituent chemical shifts in *trans*-4-X—C₆H₄—N_a=N_b — $-C_6H_5$.

EXPERIMENTAL

3-Methyl-1-phenylpyrazole-4,5-dione 4-(4'-substituted phenyl)hydrazones Ib-Il were prepared by azo coupling of the respective diazonium salts with 3-methyl-1-phenylpyrazole-5-one in acetic acid medium⁷. Compound *Ia* was prepared by acid hydrolysis of compound Il^8 . The compounds were recrystallized from ethanol. The ¹⁵N-enriched compounds $(Ia - N_{\beta}, N_1, N_2; 95\%^{15}N; Id - N_{\alpha}: 10\%^{15}N, N_{\beta}, N_1, N_2: 95\%^{15}N; Ik - N_{\alpha}: 10\%^{15}N, N_{\beta}, N_1, N_2: 95\%^{15}N)$ were prepared similarly by azo coupling with [¹⁵N₂]-3-methyl-1-phenylpyrazole-5-one⁹.

The ¹³C and ¹⁵N NMR spectra were measured with a JNM-FX 100 (JEOL) apparatus at 25:047 and 10:095 MHz, resp., in the pulse mode. The samples for the measurements were about 20% (w/v) or saturated (in the case of the little soluble derivatives *Ia* and *Ik*) solutions in C²HCl₃ in 10 mm NMR test tubes, temperature 300 K. The experimental conditions of the measurements of ¹³C NMR spectra were as follows: spectral width 5 000 Hz, 8 K, 30° pulse, pulse repetition 3 s. The ¹³C chemical shifts are related to the solvent signal ($\delta = 77.0$) and transformed to the δ scale. The 1-D INADEQUATE (ref.¹⁰) ¹³C NMR spectra of compound *Id* and *trans*-azobenzene were measured on a Bruker AM-300 NMR spectrometer at 75:54 MHz with the use of the pulse program INADCOMP (Bruker; VS. 831101) which utilizes composite 90° and 180° pulses and Ernst-type double-quantum phase cycling for suppression of the artefacts. The length of mixing period for transfer of the double-quantum coherences into observable magnetization was optimized for coupling constant ¹*J*(¹³C, ¹³C) = 60 Hz. The relaxation delay was 6 s, and accumulations were carried out overnight. The observation offset, spectral width, and number of memory points were chosen so that digital resolution in spectra were better than 0.1 Hz/point.

The ¹⁵N NMR spectra of the N_a nitrogen atoms were measured in the following way: spectral width 5 000 Hz, 8 K, 45° pulse, pulse repetition 5 s, the proton noise decoupling. After the measurement of ¹⁵N chemical shifts of the N_a nitrogen atoms, the solutions of compounds *I* were treated with Cr(acac)₃ (20 mg/ml) as the relaxation agent, and the measurement of ¹⁵N chemical shifts was carried out at the above-given conditions. The ¹⁵N chemical shifts were related to external neat nitromethane (25% ¹⁵N).

RESULTS AND DISCUSSION

The ${}^{1}J({}^{13}C, {}^{13}C)$ coupling constants obtained from the 1-D INADEQUATE spectrum of compound *Id* enable an unambiguous assignment of the ${}^{13}C$ chemical shifts of this compound. The results are given in Table I, and the assignment of ${}^{13}C$

chemical shifts agrees with published data⁴⁻⁶. The compound *Id* was used as the model standard for estimation of the content of azo and hydrazo forms in azo dyestuffs^{2,3}. In order to appreciate the possibility of the ¹J(¹³C, ¹³C) coupling constants to the same purpose, we measured, by the 1-D INADEQUATE method, the ¹J-(¹³C, ¹³C) coupling constants in *trans*-azobenzene (¹J(¹³C, ¹³C) = 64·3 (C(1)-(-C(2)); 56·7 (C(2) C(3)); 55·8 (C(3) C(4)) Hz; ± 0.1 Hz). From the comparison with ¹J(¹³C, ¹³C) of the C(1')-C(4') carbon atoms of compound *Id* it follows that, due to practical coincidence of the corresponding values, the ¹J(¹³C, ¹³C) values are almost useless for appreciation of the azo-hydrazone tautomerism. This conclusion is also confirmed by the corresponding ¹J(¹³C, ¹³C) values of phenyl group in the azo coupling product of benzenediazonium chloride and 2-naphthol (¹J = 65·0, 58·2, and 56·0)¹¹.

The ¹³C chemical shifts of compounds Ia-Ik (compound Il exhibits slight solubility in C²HCl₃) are given in Table II. The assignment was carried out with the help of the ¹³C substituent chemical shifts¹² and was checked with respect to the ¹³C proton coupled spectrum and/or by means of the selective decoupling.

The ¹⁵N NMR chemical shifts of compounds Ia-Ik are presented in Table III. First we measured the ¹⁵N chemical shift of N_aH group, then the relaxation agent (see Experimental) was added and the ¹⁵N chemical shifts of all nitrogen atoms were measured. A typical ¹⁵N NMR spectrum obtained by overnight accumulation

Carbon	$\delta(^{13}\mathrm{C})^a$	${}^{1}J({}^{13}C, {}^{13}C)^{b}$	${}^{1}J({}^{13}C, H)^{a}$	${}^{n}J({}^{15}N_{\alpha}, {}^{13}C)^{a}$	${}^{n}J({}^{15}N_{\beta}, {}^{13}C)^{a}$
3	148.30	63·7 (C(3) C(4))	_	${}^{3}J = 2.90$	$^{2}J = 8.64$
4	128.31	66·9 (C(4) C(5))		$^{2}J = 0.60$	${}^{1}J = 5 \cdot 13$
5	157-55		-	${}^{3}J = 1.68$	$^{2}J < 0.5$
6	137.91	64·4 (C(6) C(7))	<u></u> _	_	_
7	118-28	57·8 (C(7) C(8))	163-2		
8	128.75	55-9 (C(8) C(9))	161-4	_	
9	124.91		161.0	_	
10	11.66	52.6 (C(3) C(10))	129.4		—
1'	140.94	65·2 (C(1') C(2'))	_	${}^{1}J = 18.77$	${}^{2}J = 5.71$
2′	115.60	59.0 (C(2') C(3'))	161-4	${}^{2}J = 1.83$	${}^{3}J = 2.34$
3'	129.48	56.0 (C(3') C(4'))	16 1·4	${}^{3}J = 2.44$	$^{4}J < 0.5$
4′	125.59		161.5	$^{4}J < 0.5$	$^{5}J < 0.5$

¹³C NMR chemical shifts and ¹ $J(^{13}C, ^{13}C)$, ¹ $J(^{13}C, H)$, and ⁿ $J(^{15}N, ^{13}C)$ coupling constants of compound *Id* in C²HCl₃ at 300 K

^a Ref.²; ^b Hz, ±0.1 Hz.

TABLE I

puncamo						Car	pon					
ninodillo	3	4	S	9	7	8	6	10	1,	2,	3,	, 4
Ia	148-2	126-7	158-1	138-3	118-5	128-9	124-9	11.7	133-1	117-5	115-8	145-1
IP^a	147-8	127-0	157-5	138-0	117-9	128-5	124.5	11-4	134-4	116-7	114-5 ^b	157-5
Ic^{c}	147-8	127-4	157-3	137-9	117-8	128-5	124-4	11-4	138•5	115-2	129-7	135-2
PI	148-3	128-3	157-6	137-9	118-3	128-8	124-9	11.7	140-9	115-6	129-5	125.6
Ie^{d}	148-2	128·3	157-5	137-9	118·2	128-7	124-9	11.6	137-3	117-0	116-4	160.3
If	148.1	128-7	157-3	137-8	118-0	128-7	124-9	11.5	139-5	116.5	129-4	130-5
Ig	148·3	128-9	157-5	137-8	118-2	128.8	125.1	11-6	140-1	117-0	132-5	118-4
ЧI	148-0	128.8	157-3	137-7	118-0	128.6	124-9	11-6	140-6	117-2	138-2	0-68
Ii^e	147-9	129-4	157-1	137-4	117-5	128-4	124·6	11-4	144.1	114.5	130-8	126.1
lj ^f	148-5	129-9	157-5	137-7	118-2	128-8	125-2	11.6	143-7	115-4	126-8	126-9
Ik	148-6	131-5	157-2	137-5	118-4	129-0	125.5	11.8	146.1	115-3	125-7	144-4

TABLE II ¹³C NMR chemical shifts of compounds Ia-Ik in C²HCl₃ at 300 K

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

730

NMR Spectra of Phenylhydrazones

after addition of chromium(III) acetylacetonate $(Cr(acac)_3)$ is presented in Fig. 1. Compounds *Ia* and *Ik*, which are very little soluble in C²HCl₃, and compound *Id* (for the purposes of comparison and calculation of the substituent chemical shifts,

$\delta(N_2)^a$	$\delta(N_1)^a$	$\delta(N_{\beta})^{a}$	$\delta(N_{\alpha})^{a}$	$\delta(N_{\alpha})$	Compound
	· · · · · · · · · · · · · · · · · · ·				
- 80.4	$-191 \cdot 3^{b}$	-17.4^{b}		- 199 •9	Ια
79.2	-192·4	- 19·0	-204.4	-203.6	Ib
- 78·1	- 192-9	- 19·8	-205.8	-204.5	Ic
- 76.1	1 92·4		-206.4	-205.6	Id
- 75·3	— 191·5 ^c	17·4 ^c		$-205 \cdot 4^{c}$	Id
- 75.8	- 192 ·1	- 19 · 8	-208.6	207.6	Ie
74·2	-192.3	-20.8	209.4	208.7	If
— 7 4 ·7	- 192.5	- 20.8	-209.3	-208.2	Ig
- 73.9	- 192 ·1	-21.3	-209.2	-208.6	Ih
-72.3	- 192.9	22.7	-210.8	-209.8	Ii
- 72.1	-192.8	-22.2	-212.1	-210.9	IJ
		$-22 \cdot 4^{c}$		-212·9°	İk
- 67•4	-191.9^{d}	-22.7^{d}	$-213 \cdot 2^{d}$		Ik

TABLE III ¹⁵N Chemical shifts of compounds Ia-Ik in C²HCl₃ at 300 K

^{*a*} Measured with the addition of Cr(acac)₃ (20 mg/ml); ^{*b*} the ¹⁵N₃-labelled compound measured without Cr(acac)₃; ^{*c*} the ¹⁵N₄-labelled compound measured without Cr(acac)₃; ^{*d*} the ¹⁵N₄-labelled compound measured with addition of Cr(acac)₃.

FIG. 1 The ${}^{15}N$ NMR spectrum of compound *Id* measured with addition of Cr(acac)₃ at 300 K

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

2	
LE	
8	
~	

TABLE IV ¹⁵N and ¹³C substituent chemical shifts (SCS) of compounds Ia-Ik and of 4-substituted *trans*-azobenzenes^a II

-			Ia-k			Γ	Ι
Substituent	¹⁵ N _a -SCS	¹⁵ N _β —SCS	¹⁵ N ₁ -SCS	¹⁵ N ₂ —SCS	$^{13}C_4$ —SCS	¹⁵ N _a —SCS	¹⁵ N _β -SCS
N(CH ₃) ₂	1	I	1	I	I		-31-3
NH_2	5.7	0-0	0-2	-5.1	-1.6		-25.8
ocH ₃	2.0	-0.1	0-0	-3.1	-1.3	-5-7	
CH ₃	1.1	6-0	0-5	-2.0	6-0	1-4	5.4
H	0-0	0-0	0-0	0-0	0-0	0.0	0.0
Ц	2.0	6-0	0-3	0.3	0-0	$-5\cdot 2^b$	-2.9^{b}
G	-3.1	-1.9	0.1	1.9	0-4	1	1
Br	-2.6	-1.9	-0.1	1-4	9.0	-5.4	1-4
I	-3.0	-2.4	0-3	2.2	0-5	ł	1
CH ₃ COO	-4-2	-3.8	-0.4	4.0	1.1	-	1
CF_3	-5.3	-3.3	-0.5	3.8	1.6	l	1
NO2	7.5	-5.0	-0.5	8.7	3.2	-6.6	16.5

see below) were measured after being enriched in the ¹⁵N isotope. The ¹⁵N-enriched compounds enable the measurement of ${}^{1}J({}^{15}N, {}^{15}N)$ coupling constants. The following values were found: $Ia - {}^{1}J({}^{15}N_{1}, {}^{15}N_{2}) = 12.0; Id - {}^{1}J({}^{15}N_{n}, {}^{15}N_{6}) =$ = 11.1; ${}^{1}J({}^{15}N_1, {}^{15}N_2) = 12.2; Ik - {}^{1}J({}^{15}N_1, {}^{15}N_2) = 12.4; {}^{1}J({}^{15}N_{\alpha}, {}^{15}N_{\beta}) =$ = 11.1 (Hz; ± 0.3 Hz). The ${}^{1}J({}^{15}N_{a}, {}^{15}N_{b})$ values found correspond to hydrazo compounds¹³, and the ${}^{1}J({}^{15}N_{1}, {}^{15}N_{2})$ agree with the analogous values found for $[^{15}N_2]$ -1-phenylpyrazole and 3-methyl-1-phenylpyrazol-5-one⁹. The assignment of N_{α} and N_{β} nitrogen atoms was carried out unambiguously by measuring the ¹⁵N--monolabelled compounds Id (ref.³). The assignment of the N_{a} atom agrees with high negative value of the nuclear Overhauser effect which remains partially maintained also in the spectra measured after the addition of Cr(acac)₃ (Fig. 1). The ¹⁵N chemical shifts of the N_1 and N_2 nitrogen atoms were differentiated by comparison with those in 1-phenylpyrazole and 3-methyl-1-phenylpyrazol-5-one⁹. The signals with the ${}^{15}N$ chemical shifts about -192 ppm were assigned to the N₁ nitrogen atom (pyrrole type of nitrogen¹⁴) and those about -76 ppm to N₂ (pyridine type of nitrogen¹⁴). The ¹⁵N substituent chemical shifts (SCS) were calculated from Eq. (1):

$${}^{15}N-SCS = \delta({}^{15}N)_{x} - \delta({}^{15}N)_{H}. \qquad (1)$$

TABLE V

The constants of correlation equation (2) for N_{α} , N_{β} , N_2 , and C(4) atoms in compounds I and N_{α} , N_{β} atoms in *trans*-4-X—C₆H₄— N_{α} — N_{β} —C₆H₅ (II) and nitrogen atoms of other model compounds

Nucleus	QI	ℓ _R ¯ _R	Const.	λ^a	f^b	n ^c
N -1	$-(10.10 \pm 0.48)$	(7.05 _ (0.22) σ ^{BA}	$-(0.02 \pm 0.20)$	0.78	0.070	11
$N_{\alpha}-I$	-(3.74 + 0.71)	$-(3.76 + 0.49) \sigma_{\rm P}$	-(0.99 + 0.28)	1.01	0.141	11
N ₂ - <i>I</i>	(10.01 ± 0.93)	$(11.91 \pm 0.91) \sigma_{\rm R}^{0}$	$-(0.41 \pm 0.40)$	1.19	0.138	11
C(4)-I	(3.63 ± 0.37)	(4·27 \pm 0·36) σ_{R}^{0}	$-(0.23 \pm 0.16)$	1.18	0.159	11
N_{α} -II	$-(7.93 \pm 2.40)$	(4·61 \pm 0·86) $\sigma_{ m R}^+$	$-(0.37 \pm 1.10)$	-0.28	0.190	8
N ₈ -II	(18.38 ± 2.20)	$(18.27 \pm 0.78) \sigma_{R}^{+}$	(0.04 ± 0.78)	0.99	0.067	8
N ^d ,e	12.11	21.64 $\sigma_{\rm R}$		1.79		9
$N^{d,f}$	4.42	8.61 $\sigma_{\rm R}$		1.95		7
N ^{d,g}	0.61	5.27 or		8.64		5
N^{h}	-6.0	$-1.0 \sigma_{\rm R}^{0}$		0.17	0.09	11
N ⁱ	$-(2.73 \pm 0.51)$	$-(2.67\pm0.44)~\sigma_{R}^{0}$	$-$ (9·75 \pm 0·92)	1.02		10

^{*a*} $\lambda = \rho_{\rm R}/\rho_{\rm I}$; ^{*b*} see the text; ^{*c*} number of points; ^{*d*} ref.²¹; ^{*e*} 4-X—C₆H₄—NH₂; ^{*f*} 4-X—C₆H₄— --NHSO₂C₆H₅; ^{*g*} 4-X—C₆H₄—NHCOCH₃; ^{*h*} 4-X—C₆H₄NO₂, ref.¹⁸; ^{*i*} 2-substituted 5(6)--nitrobenzimidazoles, ref.²².

The ¹³C—SCS of C(4) carbon atom were calculated similarly. The values of substituent chemical shifts are presented in Table IV. Whereas the ¹⁵N₁—SCS depend only very little on substitution, the ¹⁵N—SCS for N_a, N_β, and N₂ exhibit very distinct dependences on the X substituent, the greatest effect being found – somewhat surprisingly – at the N₂ nitrogen atom. The substituent chemical shifts were correlated by means of Eq. (2) (ref.¹⁵):

$$SCS = \varrho_I \sigma_I + \varrho_R \bar{\sigma}_R + \text{const.}, \qquad (2)$$

where $\bar{\sigma}_{R}$ means one of the constants σ_{R}^{0} , σ_{R}^{BA} , σ_{R}^{-} , or σ_{R}^{+} (ref.¹⁶). For the correlation of $[^{15}N_{\alpha}]$ —SCS we took the values measured without addition of Cr(acac)₃. The results of correlations by means of Eq. (2) are given in Table V for compounds I and (for comparison) also trans-4-X-azobenzenes $(II)^{17}$ and some other model compounds. The differentiation between individual $\sigma_{\rm R}$ was carried out according to the lowest f value (f = SD/RMS; SD = standard deviation of the fit, RMS = root--mean-square size of the data¹⁸). The f values below 0.1 (N_{α} -I and N_{β} -II) indicate a very good fit, the f values from 0.1 to 0.2 (N_B-I, N₂-I, N_{α}-II, C(4)-I) correspond to an acceptable correlation¹⁸. Positive values of the coefficients in Eq. (2) correspond to "normal" effects of the substituents, i.e. the electron-acceptor substituents will cause a downfield shift, whereas the negative values of the ρ coefficients correspond to the "opposite" trend, i.e. the electron-acceptor substituents will induce an upfield shift¹⁸. The "opposite" effect was observed, e.g., in the case of 15 N---SCS of 3- and 4-substituted nitrobenzenes¹⁸. The same paper¹⁸ also contains a detailed discussion of reasons and consequences of such a behaviour of substituents. For N_{a} -II the constant ρ_{I} is negative and ρ_{R} is positive. Such behaviour of substituents, where the λ ($\lambda = \rho_R/\rho_1$) value is negative, is very rare with kinetic data¹⁹, whereas it is relatively frequent²⁰ with the substituent chemical shifts obtained from NMR data. From the data of Table V it is obvious, that the "opposite" trend was observed with nitro derivatives^{18,22} (NO₂ group is a strong electron acceptor) and also with both nitrogen atoms of the $-N_nH-N_n$ group in compounds I, the "normal" dependence, on the other hand, being found with anilines²¹ (NH₂ group is a strong electron donor) and also with N_{B} of azobenzenes¹⁷ and N_{2} of compounds I. From the correlation results it is obvious that the ^{15}N substituent chemical shifts correlate well with dual substituent constants, but the mechanism of this effect is not know yet. For elucidaion of the above-mentioned dependences it will be necessary to measure the ¹⁵N--SCS in further suitably chosen compound series.

REFERENCES

1. Venkataraman K.: The Chemistry of Synthetic Dyes, Vol. 1, Chap. XVIII. Academic Press, New York 1952.

NMR Spectra of Phenylhydrazones

- 2. Lyčka A., Šnobl D., Macháček V., Večeřa M.: Org. Magn. Reson. 15, 390 (1981).
- 3. Lyčka A., Šnobl D., Macháček V., Večeřa M.: Org. Magn. Reson. 16, 17 (1981).
- 4. Hinsche G., Uhlemann E., Zeigan D., Engelhardt G.: Z. Chem. 21, 414 (1981).
- 5. Zeigan D., Kleinpeter E., Wilde H., Mann G.: J. Prakt. Chem. 323, 188 (1981).
- 6. Lyčka A., Hansen P. E.: Org. Magn. Reson. 22, 569 (1984).
- 7. Michaelis A., Schäfer A.: Justus Liebigs Ann. Chem. 407, 259 (1915).
- 8. Bülow C.: Chem. Ber. 33, 187 (1900).
- 9. Hawkes G. E., Randall E. W., Elguero J., Marzin C. J.: J. Chem. Soc., Perkin Trans. 2, 1977, 1024.
- 10. Bax A., Freeman R., Kempsell S. P.: J. Am. Chem. Soc. 102, 4849 (1980).
- 11. Hansen P. E., Lyčka A.: Magn. Reson. Chem. 24, 772 (1986).
- 12. Ewing D. F.: Org. Magn. Reson. 12, 499 (1979).
- 13. Lyčka A., Šnobl D.: This Journal 46, 892 (1981).
- 14. Witanowski M., Stefaniak L., Webb G. A.: Ann. Rep. NMR Spectrosc. 11B, 74 (1981).
- 15. Ehrenson S., Brownlee R. T. C., Taft R. W.: Prog. Phys. Org. Chem. 10, 1 (1973).
- 16. Ref.¹⁵, p. 13.
- 17. Lyčka A.: This Journal 47, 1112 (1982).
- 18. Craik D. J., Levy G. C., Brownlee R. T. C.: J. Org. Chem. 48, 1601 (1983).
- 19. Ref.¹⁵, p. 48.
- Bromilow J., Brownlee R. T. C., Craik D. J., Fiske P. R., Rowe J. E., Sadek M.: J. Chem. Soc., Perkin Trans. 2, 1981, 753.
- Martin G. J., Martin M. L., Gouesnard J. P. in the book: NMR Basic Principles and Progress (P. Diehl, E. Fluck and R. Kosfeld, Eds), Vol. 18, p. 99. Springer, Berlin 1981.
- Lopyrev V. A., Larina L. I., Vakul'skaya T. I., Larin M. F., Shibanova E. F., Titova I. A., Voronkov M. G., Liepinsh E. E.; Magn. Reson. Chem. 23, 301 (1985).
- 23. Lyčka A., Kaválek J.: This Journal 49, 58 (1984).

Translated by J. Panchartek.